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Abstract

‘1’hc  gcmral solution to low-m)ergy  string theory representing static s]dlerically  symmetric
solution of the Einstein-Maxwell gravity with a mwsless scalar field l]as been found. For
cacll  value of tile coupling constant CL, this solutiml  is cha~ acterizes  by set c)f two parameters,
the physical mass  ILO and electric charge Q. ‘lhe presel ice of the iutm action between the
matter fields is found to have i)nportant  conscc]uences. In particular, tile  interaction puts
a strict limitations on the scalar field  parameter k, setti ug it to be k = + 1/2. In partial
cases, obtaiucd  solution appears to coincide with corresponding well-kuow~l  solutions and
to dcscribc black holes and naked singularities. One of the partial cases corresponds to
gravity and electromagnetic fields coupled to a scalar field with a ]Iegative kiuetic  term, ‘l%is
I)articular  solution has two regular horizons. We speculate the behaviol  of the general solution
in the extreme regime. ‘] ’he s(,ructurc  of the scalar curvature singularities in a general case
has also been examined. ‘l’he final results are presented ill a parametl  ic form.
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I. INTROD1TCTION

‘1’he tensor-scalar theories of gravity where the tensor field which is usual for general relativity
is coexisting together with one or several long-range scalar fields are the lnost natural extcmsion  of
the theoretical basmncmt  of the gravitational theory. ‘1’hc su perstring,  I llally-dil~lellsiollal  Kaluza-
Klcin, and  inflationary cosmology theories arc responsible for reviving tllc interest to so-callccl
“ dilaton  fields”, i.e. neutral scalar fields whose background values dctcrinine  the strength of the
coupling constants in the effective four-dimensional theory. Althcmgh  t llc scalar field naturally
arises in theory, its cxistcncc  from tllc point of view of t,hc p,cncra]  relativity is quite problematic.
It is well-known that the including, of the scalar field ill the theory will lead to violation of
the strong  ccluivalcncc  principle and modification of large-scale graviiat  io]lal  phcnomma  [1], [2].
‘1’hc prcscncc  of the scalar fields will also aflcct the equations of motion of the other matter
fields. “1’bus, for cxamp]c,  solutions which correspond to a pure clcctlomagnctic  field appear
to be drastically modified by the scalar field. Such solutions were st udicd in [3]- [1 2], where
it was shown that the scalar field generally destroys the horizons leading to the singularities
in a scalar curvature on a finite radii. Special attcnt  ion 1 m been paid to the cxtrcmc  case of
the charged dilaton  black ho]c solution obtained in [3], [5]. This solution has been used in [7]
for the studies of the problems of black hole thermodynamics, causal structure and quantum
phenomena in a strong flclds. In particular, analysis c)f tllc perturbations around the extreme
I101cs demonstrated the analogy of the behavior of the black holes and elementary particles in
the sense that there exists an energy gap in the excitation spectrum of the black 1101c. ‘1’hc
analysis of this analogy and the geueral  dcscripticm  of the quantum-]  nccllal lical behavior of the
black holes has been continued for extreme sul)crsynlmetl  ic dilatollic  l.dack  hole solutions with
respect to cosmic censorship conjecture in [4]. It was shown, that supcmymmetry  plays the role
of a cosmic censor in that it keeps the singularities hicldcl  L from an observer cxccpt  one falling
into a black hole. ‘J’he extcrme  rotating charged black holes coupled to di]aton  have been studied
in [6]. As a result, it was shown there that an arbitrarily small amount of angular momentum
can significantly change the properties of the solution.

In this paper we will focus our attention on the simplest extension of the standard matter
i.e. gravity couplccl to clcctromagnctic  and scalar fields. ‘J’hc density of the ],agrangian  function
L~4 for the masslcss scalar and electromagnetic fields is suggested by the low-energy limit of the
string theory in the following form:

(1)

where l’~lln  is the tensor of the electromagnetic field which is given as usual: FTllTl = Vt71An —
V,LA,,, = i&An – (9,, A,,L. ‘1’hc geometrical units c = ~ = 1 arc used throup;llout the paper and
metric convention is accepted to be (+ – ––).

Onc might note that the symmetries of this 1,agrangian  arc the general covariancc  and the
gauge symmetry. Ilcsidcs this, the expression (1) is invariant uuclcr tl]c global scale transfor-
mations, namely: #’(z)  = ~~(x) + v and A~n(x) =: cvAm(x). This freedom can bc eliminated by
specifying the value of the scalar field at the infinity ~)m. ‘1’hc constant, a in (1) is a dimensionless,
arbitrary parameter. ‘1’o study the dependence of the solutions on the st,rcngth  of interaction
bctwccn  the scalar and electromagnetic flclds, an arbitrar~r coupling constant a was introduced
in [5]. For a = O, 13q. ( 1) bccomcs  the standard 13instein-Maxwell Lagrangian  with the scalar field.
In the case a = 1, it corresponds to the contribution in total action frolll the low-energy limit of
the supcrstring  theory, treated to the lowest order in work-sheet and string  loop expansion. ‘J’hc
arbitrariness of this constant makes it possible to have both weak (a << 1) and strong (a >> 1)
coupling regimes.
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We would like to find the static, spherically symmetric, harmonic sc)lution to the equations of
the .gencral theory of relativity corresponding to the density of the Lagrangian  function given by
(l). In [8]tlle l~arl~lol~ic  solution  wasobtaixledi  ntllcslJccialc~ sewllcntl  lci~~teractionbct  weell
the matter fields is absent (a == O). 1 Iowevcr,  it is interesting to investigate how small changes in
tllc matter fields in the theory will affect the .gencral  SOIUI  ion in the case of an arbitrary value
of parameter a. ‘1’bus, the analysis of the solution in the Schwarzschild  coordinates obtained in
[5] shows, that  in the case of a = O it rwduccs to }teis~~c,-Nordstrb~,, solution of the ICinstein-
Maxwcll gravity. Ilowcver,  for a # O it represents qualitatively different physics. In particular,
this solution has a regular outer event horizon, but fen- any non-zero  value a, the inner horizon
is singular. Thmc  results make it interesting to explore the possibility of the existance  of the
spherically symmetric harmonic solution for interacting scalar  and cleclrolnagnctic  fields which
would bc regular on both horizons.

‘1’hc structure of the paper is as follows: In Section 1 I wc will derive the main system of
equations for the gravitational, scalar and electromagnetic fields. ‘1’hc l)ossibility of the additional
parametrization of the metric functions clue to covariaut  de Donder’s  harmonic gauge will be
discusscct  in Section III. In Section IV, we will construct the solution for the radial coordinate.
‘1’hc solution for the scalar field  will be obtained in Section V. ‘1’hc general static spherically
symmetric solution for interacting scalar and electromagnetic fields in general relativity will
bc prcscmtcd  in Section VI. Section VII will bc devoted to analysis of the general solution in
some special cases and will show its correspondence to well-known results. ‘l’he structure of the
singularities in scalar curvature and horizons will be examined in Scctiml VIII. And at last, the
final results in parametric form will be presented in Section  IX. In Section X we will summarize
and suggest future directions for st udics of the behaviol of the static spherically symmetric
solution for scalar and clcctromagnctic  fields in general relativity.

II. THE EQUATIONS OF MOTION.

‘1’hc gravitational field cqu ations for the general theory of relativity in the presence of fields
of matter with a Lagrmgian  function I.hf  given by Eq. (1 ) takes the forin:

l~,ln == 87r(7;nn -
1
j9mn0 (2.1)

where the symmetric cllcrgy-lllolllel]tul~l  tensor of the matt m fields 7 ~,,n I nay be easily calculated
to h!:

Wc will be looking for solutions of these equations, which will admit the covariaut  de Dondm’s
harmonica gauge condition [13] -[15], namely:

‘7rLJz99”L” “ 0, (2.3)
. .

where D?,l 1s the covarlant  chmvatm’c  with  respect to Mmkovsky metric Y711?L:

‘1’lm equations of motion
might be written as follows:

v,~~ == diag(l,  –1,--r2,--r2sin20).

of the scalar and clcctromap,netic  fields c.orrcs~~onding  to I.M (1)
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9n’nV,nVn~  – ~ e-2”d’F,,mF’”n  = O, (2.4)

V,,, (fig’n’’gklFrzl)  = O, V~P,,zn + V#k,,, + vn, ~’;, k ‘ 0. (2.5)

‘1’0 avoid a confusion, let us note, that words “static spht:rical]y symnlctrica]”  here imply, that
,.

not only the clcxtromagnctlc  fmld I?TIT1, but also the elcctmmagnctic  l)otential
sylnmctrical  and clocsll’t  c]cpcnd cm time:

A,n is spherically

lm~)osing  tllc same conditions on the scalar and .g avitat io] ml fields, one might
form of the cffcctivc metric for the static spherical symnmt ric case as follows:

g,~~ = dad u(r), –v(r),  --w(r), - w(r) sin2 o).

write the general

(2.6)

‘1’lm, having taken into account the dcfinitious  above, the systcm  of the gravitational field
equations (2. 1 ) might  bc written ass follows:

(2.7a)

lt22 = –;; + :(;’; – ;’) + 1 = ;,:(A&c- ‘ad’. (2.7c)

The equation for the component RW coincides with the one for RZV, and  the otllcr  equations
bccomc exact equalities. And finally, the equations of the scalar and electromagnetic fields from
Eqs. (2.4), (2.5) take the form:

(2.8)

(2.9)

111. PARAMETERIZATION OF THE METRIC FIJNCTIONS
AND THE GENERAL SYSTEM OF THE EQUATIONS.

In order to SOIVC the systcm  of the equations Hqs. (2.7)-(2.9) wc will make a linear con~bina-
tion of the first and third equations from the system  (2.7) with the coefficients I/u and – l/w
rcspcctivcly.  ‘1’hc right hand side c)f the obtained rclatiol  I becomes equal to zero, bccausc  the
matter ficlcls  fall out:

(3.1)

From the gauge condition Hq. (2.3) onc might  get another pure gravitational equation, namely:
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l.ct us clcfinc new funct ions a(r) and ~(r) as: o = fi~t~, ~ = w~//v. ‘1’hcn onc might get
from the I@. (3. 1) ancl  (3,2) the following system of ccpuat  ions:

@ = 2ra, (cJ/32/cY)’  : = o. (3.3)

‘1’hc general solution of that system might bc writtml  in a p:wametric  forlll.  lndcecl,  let us ~mscnt
the functions a(p) ancl ~(p)  ill a following way:

dr
c@)) = A v;], P’(P) n A (P

2  -  p2) rP, ‘p = z~’
(3.4)

whcm  A, p and p arc constants (arbitrary for the moment). This substitution will enable us to
eliminate the functions & and ~ from both equations (3.3) and, as a result, c)nc will obtain two
equations for the same function r(p), namely:

(p* -- /L2) ?’p],  + 2p ?’p -- 2T = o, (3.5a)

(p2 - p2)2 rm -1- +2 = O, (3.5b)

where B is another arbitrary integrating constant. Equations (3.5) are easy to integrate and the
gmcral solutions for both of thcm may correspondingly bc presented as follc)ws:

[( )1r ( p )  == q p+ Z phi ‘=-y -i 2~L ,
p + IL

[ ( )1 13T(p) = q p + z pin ~-=~ +- 2}1 , —- = 4}13qz,
p + }1 A2

with arbitrary integrating constants q, h, Z. By choosing h = 2p and IJ =

(3.6a)

(3.6b)

4p3qZA2  and with
the help of expression (3.4), one might write the general solution for t] IC system of Eqs. (3.3) in
the following parametric form:

[( ?}LP  ‘“ 1
c(p) = A 1 +2 hl~~-f + —2 — )1P–142  ‘

[ (

2pp  -

~(p)  = A ( p2 – }L2) 1 -F Z in ;-~—~;  + —
----)1P2 -. ,1,2 ‘

[ ( )1r(p) == q p-t Z p hl~-~ -1- 21L .
p 4- p

(3.7a)

(3.71!))

(3.7C)

Note that although we have solved the problem for tllc partial case with Z = O, it is easy
to expand the obtained results on more general case with Z # O. l?xxause  of this wc will take
Z = O from now on and will reconstruct a non-m-o value of the constal]t  Z in the final results
only. ‘1’hc constants A and q are the multipliers which define the scale of nleassurcnmnts  of the
coorclinatc. Without losing generality, wc may set these constants to bc cclual  to unity.

‘1’hc relations (3.7) enable us to express the variables II and v in SUCII a way that:

(3.8)

After this substitution, the system of equations Eqs. (2.7) and Eq. (2.8) ]night be writtcm as:
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[  –  :; (r2 –  p2)  +- ?,7.]’ ,. 2Q:c2ad’,‘u)

12

( )
--g+; :+ = 2(4’)2,

(3.9a)

(3.9b)

[#(P - /,2)]’  ,= @e2(Jd), (3.9C)
‘u)

whcm the clcxtric  charge  Q is the integral of the Maxwell equations (2.9). ‘1’llis allow Gauss’ law
to be gcncralizcd  for curved space-time in the followil~g  way:

(3.10)

where J; = AL is the intensity of the clcctromagmtic field.
111 order to find tllc solution for the function w(r), let us define a ncw function ~(r) as follows:

w(r) == j(?-)cza$$(~)  , (3.11)

Onc might note that in the limit (a –j O), the function j(?) and solution for w(r) obtained due
to substitution (3.11) will correspond to the unperturbed function w(r)()  obtained in [4]. ‘l’hen,
in terms of the function ~(r), the system of the cquaticms (3.9) mip;ld  be rcwrit  ten as:

f’ 2[ - T(T -- p2) + 2r]’~ = 2(1 t a2)Q’) (3.12a)

m)” + a#$’ -1 (1+- a’)(q$)’  =- --~ [(~)’ + ~ (+’)2], (3.12b)

[qY(r2 -- /L2)]’f = uQ?. (3.12c)

Our future strategy will be the following: first, wc will solve tl]e equation (3.12a) for the
function ~. Second, the obtained function j will then Ix! used in the equation (3.12b) which
is consiclcrcd  here as determining of the scalar  field ~. Solutions fol the functions .f and @,
obtained this way, should satisfy the equation of motion of the scalar field, which is prcscntcd
by the equation (3.12 c).

IV. THE CONSTRUCTION OF THE SOLUTION FOR THE FUNCTION f(~).

‘1’0 find the solution for the function ~(r) from Eqs. (3.12a), wc will be using the following
form:

~(r) == 2(1 + a2)Q2 . (T2 -- p2)v2(r), (4.1)

where wc have introduce a new function v(r). ‘J’hen, the equation F;q. (3.12a) might be rewritten
iu terms of the function v:

2 21/1 ,
[ -- (r’ - p )–J-] (r’ - p2)l/2 = 1. (4.2)

‘.I’o integrate this equation wc first introduce a new radial coordillatc  p 1 )y the relation:
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()r—p  s

p= _—— ——
r-tp ‘

(4.3)

where s is an arbitrary parameter. ‘1’hen thccquatjion  (4.2) nmybcrcwlittcn  as:

Vupp —

Aftcrsomcalgcbra,  o]lcllliglltobtaill

v](p)  ==

1 11
v; + --VVP -t —j-> - j

8s  /1 p’
= o.

P

two solutions for this equation, namely:

+
1 ( )——-- Bp” – ;J p’  “ ,

4d2sILlL

1
V2(JJ) = b 4: –-- —-- 111p,

2@s/L

(4.4)

(4.5a)

(4.5b)

where h, }J, h arc again arbitrary constants. It is easy to scc that the result (4.5b)  is the limiting
case of the solution (4.5a) with parameter h == O. So, ihc t!xpression  for VI (p) from l?c~, (4 .5a) is
the general solution for the equation (4.4) where parameters & B and h might arbitrarily take
both real and imaginary values as WC1l.

‘1’hc function ~1 (r) which corresponds to the gcmcral  solution of ]Zj (4.5a) might then bc
prescntlcd  in the following form:

fl(~) = (1 + az)- Q2

[  (r+/)s’h-lj(~!.+)s’h]2  (4.6)
~6Fiij(r2  -  p2) B ‘-:2

Substituting that expression into Eq. (3.12a), onc can sec I hat function fl bccomcs  the solution
of this ccluation if the following condition is satisfied: S2}L2  = (s + h)2 = k2, where k is SOmC
ncw arbitrary parameter.
prcscntcd  as follows:

f(r) =(1

After this, the general solution for the function ~(r) might finally bc

(4.7a)

‘1’his result in the limiting case of k = O, might bc written as:

(4.7b)

In the following sections, we will find the solution for the functicnl  ~~(r) from the equation
(3.12r5)  with the g-cncral  solution for the function f(r) giwm by the cx~mssion  (4.7a).

V. SOLUTION FOR THE SCALAR FIELD qi(r).

‘1’0 find the solution for the function # from t,hc equation (3.1213) wc will usc the following
substitution:

((r)~’(r) =: ;7-_—,i2-, (5.1)

where ~(r)  is a ncw function to be determined. ‘1’hcm, with the hcl])  of tllc expressions (4.5a)
and (4.7cL),  the equation Eq. (3.12b) becomes:
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a(r2 – /L2)(c& -t 2($ i- (1 + a2)(2 := p2(l -- 4k2).

I,et  us define a ncw radial coordinate z as follows:

B2p2 – 1

( )

r- /1  k

~=j)2p2  +]’
~=—.–.

rip

(5.2)

(5.3)

Using this ncw coordinate z, the equation (5.2) might  be ] cwrittcm as:

(2(1 – ~2) + ;<+ +;:;(2 “ 2’Zk;(l - 4k2). (5.4)

‘1’hc general solution of this diffcrclhial  equation  is cmsy to find ant] it may bc prcscntcd  as a
function of coordinate p in the following form:

2@cL 6 c;(Dp)2A/k  -t 1 -  @p)2 - t  1
~(p)  =  ~z~ (z ~;(l;p)Wk - 1 ‘--””-”  )(Bp)2  --1 ‘

(5.5)

where Co is arbitrary integrating constant and 6 is dcdlncd  as the cxprcssio~l:

‘1’his finally gives the following general solution for the function ~)(p):

[(do) = 00+- ~,a= h] co(Bp)~/k  -- –..: -)(’’’- J;)-]]c@p)6/k
(5.7)

where @o is an arbitrary integrating constant. Note that, the obtained result for the function
~~(p) omits  Lhc homogeneous non-trivial limit a -~ 0.

VI. TII13 GENERAL SOLUTION.

Now wc arc in the position to write down the general solution fol the function w(r). 13y
substituting the expression (4.7a) into Eq. (3.11) and expressing c zfl@tT’J  with  the help of the
relation (5. 7) OIIC might write the result for w(r) as follows:

(6.1)

where the constants p, Q, k, 13, Co and  do arc arbitrary for the moment. In order to limit the
number of arbitrary constants in this solution, wc will ill lpose two asylnl)totical  conditions on
functions @(r) and w(r), namely:

(b(r -+ cm) == ~)m = o , U)(?’ + co) == 7’2. (6.2)

‘1’hen from the relation (5.7) wc will have:

(6.3)
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Making of usc the scxond colldition  from Eq. (6.2) and taking into account the expression for
C2a~IJ above, onc might write auothcx  constraint as:

()
– 2

]3 -.. ;
Q2

= (1 -}- a2)i6,m. (6.4)

Eliminating paramcler  B with the help of relation (6.4), we can rewrite the cxprwssion for
the function w(r) given by Ec]. (6. 1 ) as follows:

W1lC!K! Constarlt  B d(!finc!d  by Eq. (6.4) becomes:

(6.5)

(6.6)

L4aking of usc the results for the constants ~~o and 11 obtail  led above, onc might present the final
solution for the function @(r) given by the expression (5.7) as follows:

(6.7)

‘1’bus, wc have obtained a general solution for
values of the coupling constant a, this solution
and Co.

th(! systen  I of equations kk]s. (3.9). For arbitrary
is labcld by four arbitrary parameters IL, Q, k

VII. THE SPECIAL CASES OF ‘1’HE GENERAL SOLUTION.

In this section wc analyze the various special cases of tllc general solution by setting some of
the parameters equal to m-o,  while the others remain  uncl langed.

(i). a = O. in this case the solution represents non-ilkeracting  scalar and electromagnetic
fields. ‘1’hc similar solution in harmonica coordinates was previously old,aimxl in [8]. Note that
tllc dcIxxldcncc on the constant Co in (6.5)-(6.7) drops out and the solution in this case may km
labeled by the set of threw parameters (p, k ancl Q):

(7.la)

where the constant, A. is given by the expression for A (6.6) with a = O. One might notice that
the scalar field is real for Ikl < 1/2, but becomes complex when Ikl > 1/2. For the k = +1/2
expressions (7.1) corresponds to the Rcisncr-Nordstrorn  solution with  pure electromagnetic field
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in harmonic coordinates of the Minkovsky space-time. ‘1’o ~,et the actual  form of the interval ds2
corrcsl)onding  to obtained solution, onc shoulc] usc the relations for t] LC met ric functions u(r)
and v(r) prcscmtcd  by (3.8) and substitute thcm into (2.6). For cxamplcj  for k = — 1/2 onc might
.gct the following interval:

&2 r ( ‘ r  — /10 Q; )( )
Q: -1

7’+- /to + (r -+ #o)2
d~2 – !=@ +. —. .. —---

T+-  /40 (r - 1 -  /Lo)2 dr2 - (r + I~o)2 (d02 +- sin2 t9dp2),

(7.2a)
where parameters IL and Q arc conncctcd  to the p]) ysical mass ~~o and ihc clcctromagnctic  charge
Q. as:

(ii). An interesting case is
l~;qs. (6.5) -(6.6) in the cxtrcmc
expressions for @(r) and w(r):

u)(r) == (T2 – /42)

arises in the stro~ig;  interaction regime when a >> 1. Examins
regilne of a –j m and k := +1/2 onc lnight,  .gct the fol lowing

(j(r) == o, (7.3a)

(7.3b)

This solution corresponds to that of the R(!isncr-Nordstron~ type with the “induced charge”
J gcncratcd  by the constant C O . ‘1’aking, for example, the I ninus sign in t hc powers of ~xprcssion
in (7.3 b), onc might get:

(
.

)(
1

J 2

fi + --~~.- >
)

.—,.
ds2= q+

‘ r +  /L (r+ ji)z
d t2 –

(r+ IL)
dr2 - (r+- ~ )2 (d02 + s i n2 @dp2), (7.4)

where  paramctcn-s  it and CO are conncctcd  to physical mass 1 and “cl large”  J as follows:

c; i 1 J ~ y2J_
fi ‘“ “c: – 1 C;–1’

‘1’his result is quite surmising. Illdccd,  taking the lilnit a + 00 is cquivalcmt  to cutting off the
clcctromagnctic  term in the Lagrang;ian density LA4 (1). R om the additional condition k = +1/2
onc might notice that the scalar field also tends to bc zero. ‘1’hen,  bccaus~! of no matter fields arc
lmcscnt,  this solution should bc onc for a pure static spherically sylnmetric  gravity. Instead,  as
a result, onc obtains the solution (7.4) of the Reisncr-Nol  dstrom  ty~jc with the effcctivc metric
similar to that in (7.2a). And since the scalar field is rcspcmsiblc  for a~)l )carancc  of the constant
CO, then the “induced charge” J is caused by the scalar field, which is absent! In order to resolve
this apparent paradox, onc should require Co = O. Im1 )lcment  ation of this condition simply

corresponds to the renormalization of the constaut  ~~o  in Eq. (6.1). ‘1’hcn,  the expression (7.4)
bccomcs  the usual Fock solution in harmonic coordinates of the Minkovsky space-time.

(iii). Q = O. Whcm the ckctric  charge vanishes, the s(dution  reduces to the onc of the pure
scalar gravity with interval ds2 written as:

‘s2= (%)qd’2- (=3qdr2-@2--’L2(3)q( do”’”’ ‘il’20dp2)’ ‘7”5a)
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whcm the constant q given by the r[!lation

‘= i“&F(2k+ati=”;F-’)

With the scalar  field ~~(r) for this case presented by:

(7.5b)

‘J’hc paranmtcr  IL > 0 defines the locations of two IIorizons (IL+ ) whit]], ill tl]c case (7.5), related
to the physical mass po as ~Lj = ~LO/q.  For any q +- 1 these horizons arc singular.

Note that taking Q = O is equivalent to dropping th[:  clcctromagl  [ctic term from the I,a-
grangian  density LM (1). However, onc might find it quit c unexl)cct  ins, that even after taking
Q + O, our rcsu]ts  still dcpc~ld on the arbitrary l)aramcter  a which charactmizcs  the intensity
of the interaction bctwccn  th(! matter fields. ‘1’his contradiction mig;llt  1 )C resolved by choosing
the paramckcr  k to bc k = +1/2 and the signs in (7.5) in such a way that these expressions will
not  dcpcncls  011 a. ‘1’his fact suggests that not just,  the scalar  field affects the solutions for the
gravitational and clcctromagnctic  fields, but also tllc interaction bctwccn  tllc matter fields puts
the constraints on the scalar field itself. ‘1’hc  usual Fock solution in harmonic coordinates [13],
[14] might bc obtained from the cx]n-cssions (7.5) by sctti]lg  q = 1 (or k = +1/2)  and choosing
the same signs for both terms  in (7.5b).

(iv). (lne might expect that all the expressions for the genera] solution should omit the
homogeneous non-trivial limit in case where constant a becomes inlagillary:  a ~ +i. Indeed,
onc might obtain the following result in that limit:

(7.6a)

(7.6t))

‘J’hcsc cxpr(!ssions  arc!, in genera], singular. However, if we will cht)cmc the parameter k as
k = +1/2, wc will obtain  an interesting result. For cxaml dc, for k = 1/2 tllc expressions (7.6)
t)(!conlc:

c#(?-)  = +i :;(1 - ;:\; ), (7.7a)

Q 2

w(r) = (r+  /L)2CX~> [;;2 (1 – ~ )], (7.7b)

‘u(r) := -& == (:+=-) Cxp [$ (~ --- 1)] . (7.7C)

‘1’his is an interesting modification of the Fock solution (SCC case (iii) and expression (7.5)) in the
prcscncc  of the complex scalar and clcctromagnctic  ficlcls.  Solution (7.7) is labeled by the means
of two parameters /L and Q. ‘l’his solution has two regular events horizc~lls  r~ , which correspond
to the physical mass ILO  and the charge Q. of the black hc)lc  as follows:
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The  expression (7.8) limits the possible value of the physical mass to bc p. 2 fiQo. in the next
Section wc will show that the scalar curvature corrcspondi)  Ig to tllc solution (7.7) is also regular
on surfaces (7.8).

‘1’hc prcscncc  of the i in the cxprmsion  for @ in (7.7a) ]night be interlmied  as changing the
sign in front of the scalar field term in the I,agrangian  dmlsity 1,~1 (1) to be:

(7.9)

whmc wc denote p == – @ . The  l,agrangians  of that type correspond to the theory with a
complex scalar ficdd [1]-[4]. ‘1’hc ma] part of this field  is dilaton  and its ilna?;inary  part is axion.
Inthccasc  (7.7), tllcobtaillcd  sol~ltioIl  dc~~cllds  o)~lyoll  tlledilato1-l  field with theaxion  having
km taken  tobc aconstant.  Unfortunately, the negative kinetic tcmn - g“’nVn,pVnpin  (7.9)
.gcmcrally  leads to a theory without statdc  states. ‘1’his result  is allows il lfinitc]y  many negative
cm!rgy states when the system  is quantized [2], [8]. Ilowcve], this statement should be separately
cliscusscxl  in the case of the solution (7.7).

(v). In the case of k = O the gcnmal  solution of Eqs.(6.5)-(6.7)  beco~]m:

(7.10b)

With Q = O and an arbitrary a, this result is the usual solution for tllc scalar field  given by
(7.5). For an arbitrary value of both parameters a and Q, t hc cxpressiol]s (7.10) arc representing
the solution with the naked  singularity at r = IL. ‘l’he physical mass and electric charge for this
case arc related as:

porn-  a2 = Q. + ap. (7.1OC)

If wc set the parameter ~L = O, the result (7.10) will take tllc form:

o(~) I ;:: = – ~;–[i 111 [
1 + /] +a2Q-‘1 (7.lla)

r ’

[

--— (] &1W(T) I,J. O = r2 1 T &t- a2-”- . (7.llb)
.kZo 1’

It easy to scc from (7. 10c), that  the physical mass p. is, in this case, gcncratcd  just by the
electric charge. ‘1’his result is also rcprcscnts  the uakcd sil  lgularit  ies. Dcpcllding  on the sign in
front of the square root in th[! expressions (7.11), they occur at r+ = O for the positive sign and
at T. = [0; {~2Q] for t,hc negative.

(vi). And finally, in the case k = +1/2,  the general solution becomes a Garfinke-Horowitz-
Strominger  [5] type solution in harmonic coordinates.

A). ‘1’hus with k = – 1 /2 and a positive sign in front of the W + A? ill the experssion  (6.6)
onc might get:

(7.12a)
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1  - t  ~+–Aj i%
~~- (T) =  (r+ ///@A:)2 (1 -  /~-;,~A~) ~ (7.12b)

+
_—— — ~–az

1

(

I–/i+A?
) (

I +  ~-”+ A; Ii=
IL- (?’) = — == 1 + p-—. — . . 1- p-—-----

‘“-)
(7.12c)

t)- (r) I-+/L/i+A; r+pfi+A~ ‘

where fuuction  A: is cldincd  from (6.6)  as:

A; = (1 + CL2)Q~-.
/12

‘1’hc horizons l?l ancl  R2 am rclatecl  to the mass p. ancl  c1 large Q. of t] LC

(7.13)

l)cde according to:

(7.14a)

(7.14b)

(7.14C)

B). In case of k = 1/2 and a negative sign in front  of the fi -E A2 in (6.6), OIN will  obtain
the following result:

(7.15.)

(7.15b)

1 1+/i+A: l–fi;’A~ %
tti(~)=m= (1 --- /1—–—-===–)  (1 -1 ~L—------

-“”-””)
(7.15C)

r + p/1 +- Al r + p{l-~t: A: “

‘J’lIc horizons R; and RL arc connected to physical mass p. and cha]ge  QO by the relations
(7.1 4a). Expressions for these horizons may be ol)tained  from (7.14b) by the swiching the signs
(+ * –) , namely:

which correspond to :

1
M  =  i:-~ (- poa23: @o - (1 –a2)Q~). (7.16b)

onc might see that by taking the limit (a –> &i) in the CX] messiolls (7.16b), cme will immediately
arrive to the result (7.7) presented above.

‘1’hc solutions in both partial caxs (7.12) and (7.15) will have coinciding horizon IL* when the
constant a = 1 (i.e. string case). “l’his horizon might  bc ]wcscntccl as follows:

12
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Assuming that parameters p* and p. are both positive, for the physical mass p. and the ckctric
charge Q onc will get the followiug  relation in the string case: ~~o ~ Q/<2.

It is easy to scc that the partial crms demonstrates a differad  bcl lavior  whcnl the electric
charge is taken to bc zero. ‘J’bus, in the limit (Q –j 0), the expressions (7.12) corresponds to pure
scalar gravity with the Iincar eknncnt  ds2 givcll by (7.5cL) and paralnctm  q == (1 – a2)/(1 + a2).
However, in the same limit, result (7.15) corresponds to th~e I?ock scdution  for an arbitrary value
for the constant a. Note that taking (Q = O) is equivalent to extracting of the electromagnetic
term  from the action (1). Momovcr, by choosing; the parameter k ill addition to that as k = +1 /2,
onc will clliminatc  the scalar field term also. ‘1’hen, the solution in this  limit should dcscribc  a
static spherically symmetric distribution of matter. Bccausc  of this reason, on] y the result in the
partial case (7.15) is likely corresponds to a charged black liolc solution  ill harmonic coordinates.

VIII. THE SINGULARITIES IN THE S{~ALAR CUIWATURE.

In order to study  the structure of the singularities of the general solution, let us clarify the
meaning of the parameter p. As onc might have noticed in a previous section, the parameter
p clcscribcs  the locations of the horizons. ‘1’o specify its meaning, wc shall connect it to the
physical mass p. and clectrica,l  charge Q.. Onc may id(!ntify  the physical mass f~o by cxamiuiug
I/r behavior of goo far away from the source, namely by using the expression for goo in a weak-
ficlcl  al~l~roxil~~atiol~:  goo == 1 – 2po/r  + 0(1 /r2), while (r + cm). ‘1 ‘I)cn,  making of usc the
relations for the general solution givcm by Eq. (6.5) – (6.7) with parameter Co = O, one might
obtain the rccluircd  connection between the parameters frt nn (3.8):

1 (—– + pear+ a2  ~-~~z + 4/1&2 - Q~(4k’ - a 2 )  ,J“

_..——

‘L = 4k2 – a 2
‘-””-)

(8.la)

whcx-e  the signs should be chosen in order to satisfy the condition IL > 0. In partial cases this
result corresponds to solutions wc have obt aiued in the previous Sectioll. The relation (8.1) sets
the condition on the values c)f the parameters k and a, connecting them to relations between

physical mass and electrical charge:

(8.lb)

T’he result (8.1 b) puts also the limitation on the parameters k and a as: 4 k2 – a2 20. Note, in
the case 4k2 – a2 = O, th(! obtained relations (8.1 CL) correspond to extreme black hole solution
with /LCI  = Q o.

It is well-known that the simplest way to study the behavior of tll(! scalar curvature R is to
usc the gravitational field equations. Indeed, as far as tllc elcctronmgnetic  part of the cnergy-
momentum tensor 13q. (2.2) is tracc!less, the only contribution to the curvature R comes from
the scalar field @, Thus, by taking the trace of tllc Hilbclt-Einstein
present the scalar curvature R as follows:

2@’2(r) z
R z: –8T1’  z 2gmnVm@Vn~~  z --- —(7 -

w(r)

equations (2. 1), one might

/12), (8.2)

Substituting the results for ~(r) and  w(r) from the Eqs. (5.1), (5.5) and (6.5) in the expression
above, wc will obtain the expression for the scalar curvature R corresponding to the general
solution Eq. (6.5)-(6.7). In terms of the coordinate p given by (5.3), this expression can be
prcscntcd  as follows:
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whcr{!  q is given by (7.5 b). Noticx that, tkc metric t cnsor g?,,~l and soluticnls  fcjr both matter fields
~~(r) and L’(r) arc all divergent whcll:

‘/k = o
P) }]zp’ --1 = (). (8.4)

where coordinates r and p arc connected by 13q. (5 .3). 13 C!CiiUSC! of this, tllcrc  are physical singu-
larities  at these points. ‘J’hc singularity in the scalar curvat urc given l)y hlqs. (8.3) on the surface
p = () Illi,gllt be ~]inlinatcd  in some special cases. Thus, choosing paralncter q = 2, onc might
make R regular on this horizon for any real positive value of the parameter k. In case of k < 0
that condition should be rcplaccd  by q = –2. IIowcvcr, expression (8.3) shows that generically
scalar curvature is divergent at both  horizons and both singularities (al I not b(! eliminated at
the same tilnc  by any clloicc of parameters except the situation (a --~ 3 i). ‘J’lLus,  iu this partial
case the solution given by (7.7) has two regular horizons p. given by the mqxcssion  (7.8) and in
the case of the Largangian  function (7.9) the scalar curvat  urc l? might  bc prescxltcd  as:

(8.5)

As onc might expect, the scalar curvature is regular on t})c horizon 7’ := p. An interesting case
arises for the cxtrcmc  black hole, (i.e. p: = 2Q&),  which l~ads from (7.8) to iL = P+ = /Lo/2 AS
a result, t,hc scalar curvature might be presented l)y the following cxl)rcssion

‘2 – /L2

(
~t(?’) =’ 2/L2 ~-–-— CXP —

(r+ /L)6
:;; –1). (8.6)

Although this partial case might bc intcrcstinf;  primarily fron] the ~mre mathematical point
of view [8], the general soluticm obt aincd in this paper could bc useful for tllc description of the
quallt~llll-lllccllallical  phenomena in a strong gravitational fields and cosmology [2] ,[7].

IX. THE FINAI, RESULTS.

Finally, by reconstructing the constant Z with the he]]) of the relaticnl  (3.7c), namely:

(7’(p) = P + ~ P ]1] ‘;;-; -[ 2/L
)

onc  might obtain the general static spherically-symmetric harmonic solution for the masslms
scalar al~d clcct,romagnctic  fields in general relativity in t] )C following parametric form:

( pz – /
g,,,n =  diag .——-- –~_~lz(T’(p))2,  - w(p), --w(p) sin’ 0),

w (p) ‘ ,

E(p) = r’(p) --%?’ ”0(?’) ,
w (p)

(

2/LP

)
r’(p) == g: = ] + z lt] P—–-l: + .

dp pi- P P2 – }L2

(9.1)

(9.2)

‘1’he scalar field @ and function w arc given by the expressions (6.5) and (6.7) and in parametric
form they may bc prcwntcd as follows:
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whcm the constant B is .givcll by the relations (6.6) as:

and ]mramctcrs  6 and q arc prcscntcd  by (5.6) and (7.5b) correspondingly

6 = i&/m--4k2,
~ = ~ ~:t a~b

‘-(2k3. a~Ka2 - 4k2).1 +–U2 “ ~+ ~2

Note that only the results which correspond to q = +1 present the black hole-like solutions.
Indcccl, one might make surx!  that, this condition giw!s as a conscque]lce the equation: (1 +
a2) (2k + 1)2 = O. We have seen, that in both cases (either a =Z +i from 13q. (7.7) or k = +1/2
in the expressions (7.2), (7.5), (7.7), (7.12), (7.15)), the results correspond to different types of
black hole solutions. This fact suggests that in order to describe physically meaningful situations
the parameter k must be choosen as k = +1/2.

X. DISCUSSION.

Wc have obtained a general static sphcricall  y symmct  I ic harv ncmic  solution of the Einstcin-
Maxwcll gravity coupled to the masslcss  scalar field. l’hc  form of the singularity in the general
solution is quite well defined. By the specific choice of the constant Z, this singularity in a partial
cases might be transferred [8] from the components of effective metric gOo and g] 1 to that of g22

and g33. However, the character of this singularity, in general, remail  E unchanged.
We have shown that, in the partial cases, the solution  presented here corresponds to wcll-

known solutions, It wm noticed that the absence of the intcractioli  between the matter fields,
makes the existence of black holes in the presence of the scalar field problematic. ‘1’hc reason for
this is the appearance of the singularities in the Ricmann  icnsor  invarial lts because of the scalar
field. ‘J’hc presence of the arbitrary coupling constant a gives an opportunity to explore the
behavior of the obtained results in both weak and strong interaction rwgimcs.  In case when the
interaction bctwccn  the matter fields is included, we nc)tic(!d  that not just the scalar field  affects
the solutions for both gravitational and electromagnetic fields, but also the interaction between
the scalar and electromagnetic fields puts the constraints (m the scalar field itself. We have seen
that interaction between the matter fields drastically af)ects the space-time geometry and in
general clcstroys  both horizons of the solution. l’hc  only cxccption  to this is the solution of the
Garfhlkc-Horowitz-Stromingcr  type for the charged dilatonic  black hole, which has one regular
horizon and second which is singular. Alt bough ill one of the partial cas(!s the obtained solution
describes the dilatonic  black holes with two regular horizo]ls,  the question of the possibility of its
physical existence is open for the moment. Wc believe that the general solution presented here
might provide an interesting framework for studying qualltum-mechanical effects in relativistic
gravity.

A final question rcmaills: whether or not this solution is stable. ‘1’o study  this problem might
be interesting in a view of the cosmic censorship conjecture [4]. Note that the stability against
an axial pcrturbat  ions for solution given by expressions (7.1) has been shown in [1 6]. In [7] the
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stability of the solution presented in [5] was infcrrcci  for outside the outer hcmizon. However, for
another rclatccl  case of Einstein-Klein-Gordon equations with a quadratic self-interaction term,
it was shown that static spherically symmetric solutions arc unstable [11]. ‘l’his problem in the
general case of the solution (9.1)-(9.3) will bc investigated in a subsequent } )apcr.
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